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ON REALIZING NONHOLONOMIC CONSTRAINTS BY VISCOUS FRICTION FORCES
AND CELTIC STONES STABILITY"

A. V. KARAPETIAN

It is shown that equations of motion of nonholonomic systems can be obtained from
the equations of motion of systems freed of nonholonomic constraints subjected to
suitably chosen dissipative forces, if in the latter the dissipation coefficient is
assumed infinite. It is shown that on fairly general assumptions motions of non-
holonomic systems represent limits of motions of corresponding holonomic systems,

as the dissipation coefficient approaches infinity. The stability of rotation on

a horizontal plane of a heavy asymmetric rigid body (Celtic stone) about the vertical,
with allowance for friction, is investigated. The obtained stability conditions

are compared with previously published papers about rotation of a body on an absol-
utely rough horizontal plane around the vertical.

1. consider a mechanical system whose position is determined by »n generalized coordinat~

es ¢, ..., o and its dynamic properties are defined by the Lagrange functions L (g, ¢)=T (g
q¢) + U(q) and generalized forces Q,{¢,q) (s=1, ..., n). We assume the kinetic energy T to
be a positve definite quadratic form of velocities g¢,’,...,¢, of generalized coordinates, whose

coefficients and the force function U are twice continuously differentiable with respect to
g, and the generalized forces @, are continuously differentiable with respect to ¢ and ¢.
Let us assume that the system is subjected to nonintegrable constraints of the form

m
qa'=i2 bai (@) g7 (@==m -+ 1,...,n) (1.1)
=1
whose coefficients b,; are also twice continuously differentiable with respect to gq. The

system is then nonholonomic and its motion can be defined, for instance, by Voronets' equat-
ions

n n m
d 8 3@+4U .
?‘_TT=_L6:."_)+H‘+ Z 20+0) 1] e + Z emzv,ﬁm (i=1,....m (1.2)
% 9 a=m1 9, @=m+}1 Ja=l
it
by, bg; 4 by bg;
Vaij = __an - ag, I B;-H (_‘“an -bgj — 3q; 051)

which with the addition of Eq.(l1.1l) of constraints form a closed system. In these equations
6, Ox , and II, are obtained, respectively, from T, dT/dq,, and @, by eliminating g, using
relations (1.1).

Under these conditions Egs.(l.1) and (1.2) constitute a closed system of the (r + m)-th
order in (n 4+ m) unknowns gu ..., gn @1+ - - -+ dm, wWhich satisfies the theorems of existence
and uniqueness of solution.

Let now all coordinates ¢, and velocities ¢, of the system be independent (free of
constraints (1.1)), i.e. the system is holonomic, and let it be subjected, besides the input

forces, to dissipative forces F, = —0F/dq¢ (s =1, ..., n) which are derivatives of a function
of the form
n m
i . A2
F=—2-k Z <9a —me’%) , k>0 (1.3
a==m-+1 i=1

We take the equations of motion in the Lagrange form

d oL 8L _ oF - (1.4)
d_t?Z'—_T”q_,—TQ’ o (s=1,...,n) .

Under the indicated conditions (1.4) represents a closed system of the 2n~th order in 2n
unknowns gy, . . «» @y G1+ - - - qn, Which satisfies the theorem of existence and uniqueness of solu-
tion.
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Eliminating k from the first m equations of system (1.4) using the last (n — m) equa-
tions and dividing the last (n -- m) equations of that system by %, we obtain

d oL d JL BL 1.5
?t—aq‘ 01]‘ — Qi+ 2 (TFW Qu) bay =0 ( )
(i=1,...,m)
2 a B .
'%(_%5%+%+Qa)=% '—Z‘lbuﬂj (a=m--14,...,n) (1.6)

If we set now k = co, system (1.6) assumes the form of Eq.(l.1) of constraints and system
(1.5), after the elimination from it ¢, using formulas (1.6) with k=00 (i.e. (1.1)),
assumes the form of Voronets' equations (1.2).

The equations of motion of a nonholonomic system with constraints of form (1.1) are, thus,
obtained from the equations of motion of a system freed of nonholonomic constraints subjected
in addition to the input forces to dissipative ones that are derivatives of a function of
form (1.3) by setting in the latter k equal infinity.

Remark. Roling of a rigid body over an absolutely rough surface (without slippage) gen-
erates nonholonomic constraints of form (1.1) which express the condition of zerc velocity of
the contact point between body and supporting surface. If the system is freed from such non-
holonomic constraints (acmission of the possibility of slippage) and dissipation of form
(1.3) is introduced, then to the latter correspond forces acting on the body at its contact
point with the supporting surface, which are proporticnal to the velocity of that point of
the body, in the opposite direction, i.e. viscous friction forces.

2. We shall now prove that Tikhonov's theorem /1,2/ provides a positive answer to the
question of 'closeness of the nonholonomic system motion to satisfying the initial conditions
gos=1,..,n), @ (i=1,...,m), and to the holoncmic system with initial conditions di (s =

4, .., n), Qo(e=1,...,n), as k—oo.

Note that the last n—m of initial velocities of the holonomic system g (@ =m + 1,
.., 1) are arbitrary and may not satisfy formulas (l1.1l) at the initial instant.

We introduce the quasi-momenta

n
t=p + D pabu (i=1,...,m), Mu=pg (@=m+1,...,n) (2.1
=mmn--1
where p, = dL/dg," (s =1, ..., n) are momenta that correspond to velocities g, of the system
freed of nonholonomic constraints, and rewrite system (1.5), (1.6} in the canonical form
. OH* s
q‘mw (l=1,...,ﬂl) (2.2)
. OH* BH‘
Go = o + -5—b,,, (u—?n +1,...,n) (2.3)
n ﬂ
. _9%H*  pa_ BH* s Obai 0H* | i=1,. 2.4
= 'El"‘l‘Pi Z (a’la P, )bm + z' Ty o 3“3 2 ﬂu.z‘vahm" ( ceym) ( )
a=m1 «, f=m-1 ==m--1 =1
1. BH* 1 [3H* % 2 Oby. opre
- o =— g ———(p——DP,*— g B e=m+1 I O 2
* on,, k (Bqa k;q-l - 34, a,‘j) ( ’ ) {2.5)
where H* (g, n) is cbtained from the Hamiltonian H (g, p) that corresponds to the Lagrangian
L(g,q) Dby eliminating p,(s=1, ..., n) using formulas (2.1); similarly PE(s=1,...,n)

are obtained from P, of generalized forces ' (,, expressed in terms of coordinates and manenta,
The case of %k = o0 1in which system (2.5) assumes the form

— dH¥éng =0 (@a=m+1, ..., n) (2.6)

corresponds to a nonholonomic system,

Systems (2.2)—(2.5}and (2.2)— (2.4),(2.6) evidently satisfy on the above assumptions, the
theorems of existence and uniqueness of solution, i.e. to the first and third conditions of
Tikhonov's theorem /1,2/. Moreover, system (2.6) has the unique solution

e = Qe gy, v o Gms Ry, ..y M) (@=m+1,..., n) (2.7)
that corresponds to the equations of nonholonomic constraints. Since
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H* (‘Isv iy “a)z i (qSY pPi— }g}pﬂbﬁiv poz)

Zﬂ—bai—aizo (@=m -1,...,n)

i.e. (g = dH/dp;) is of the form (1.1), By virtue of the uniqueness and differentiability
under the above assumptions, solution (2.7) satisfies the second of Tikhonov's theorems /1,2/.
Let us consider the system

g = —0H¥dn, (a=m+ 1, ..., n) (2.8}
where the prime denotes differentiation with respect to some independent variable T, and
g:{(s=1,....n) and mn;(i=1,..., m) are considered as parameters. The solution (*) 2.7)

of system (2.8) is asymptotically stable uniformly with respect to ¢, and ;. since the
equations of perturbed motion are of the form

n
7 =— 2 @p(@2 (Fa=Ta—¢ulgy ), a=m +1,...,n) (2.9)
B=m-1

where | ags(9)ll is a matrix of the coefficients of the quasi-Hamiltonian H* for products of
the last n — m quasi-momenta, whose all eigenvalues are positive (the kinetic energy is by
assumption positive definite relative to velocities,; and this implies the positive definite-
ness of the Hamiltonian relative to momenta, as well as that of the quasi-Hamiltonian relat-
ive to quasi-momenta). It is also obvious that the solution of system (2.5) with any initial
£ +h

annroaches asvmntotically zera the whole domain of var 1 o) ig a vaoion
I ion 0T fip 1S The Yregion

Zad appreoacnes asymputotlically zZexo, i.e. 8 Wno.ie Golain oI va
of attraction of point (2.7) of system (2.8).

Consequently the last conditions of Tikhonov's theorem /1,2/ are satisfied, i.e. there
exists a O<{hy,<< o such that for k >4k, the solutions of system (2.2)— (2.5) with initial
conditions ¢, W approach in any finite time interval the solution of system (2.2)— (2.4),
(2.6) with initial conditions g, 7;0; as k—>oo. In that case m,, may not satisfy system
(2.6).

3. The following theorem is thus proved.

Theorem. Let the force function and kinetic energy coefficients of the quadratic form
of velocities, assumed positive definite, be continuously twice differentiable with respect
to coordinates, and the forces acting on the system be continuously differentiable with re-
spect to coordinates and velocities. Then the motions of a system subjected to nonholonomic
constraints of form (1.1) with coefficients twice continuously differentiable with respect to
coordinates are limit motions in any finite time interval for the corresponding motions of
a system freed of nonholonomic constraints and subjected (in addition to input) to dissipative
forces that are derivatives of functions of form (1.3), as the dissipation coefficient ap-

pvn:r«hn: infini ty.

Remarks. 1°. The initial conditions of a free system may not satisfy the equations of
constraints. Consequently, the state of a system free of nonholonomic constraints at the
initial instant can substantially differ from that of a system with constraints. However the
difference is small for times of order Ink/k and approaches zero as k- /2/.

70 e a s S AE P
2 . With approprlal:e btrengtnenlng of T uixem

[ e
Lagrangian functions, generalized forces, and coefficients of constraints the asymptotic ex-
pansions in the small parameter 1/k /2/ are valid for solving systems with dissipations freed
of constraints.

The proved theorem means in particular that the nonholonomic constraints that arise when
bodies move over absolutely rough surfaces (without slippage)canbe due to viscous friction for-
ces when the friction coefficient is infinite.

A similar statement about a specific system, that of Chaplygin's sledge on a horizontal
plane in the presence of nonholonomic constraint or of viscous friction force, was earlier
obtained by Fufaev /3/ in the course of investigation of integral curves.

@ oo vaem iAo Al : g FEEES
lll_s asS Leyalud LIS UlllerclLidaiJliily v

*) Editor's note: In the Russian original the word "equilibrium (2.7)" is used.
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Note that viscous friction occurs when a body moves on a surface in a sliding or rota-
tion mode /4,5/ (in pure sliding mode, dry friction must be considered).

4. Necessary and sufficient conditions of stability of rotation of a heavy solid body
about the vertical on an absolutely rough horizontal plane were established in /6,7/. We
shall now investigate the case of a smooth plane with viscous friction, previously investi-
gated only numerically in /8/.

Consider a heavy solid body bounded by a convex surface on a horizontal plane, assuming
that at the point of contact of the body and plane a force proportional to the velocity of
the point of contact of the body with the plane acts in the opposite direction (the viscous
friction force) on the body. We specify the position of the body by the coordinates =z, y
of the body center of mass in the fixed system of coordinates Ozyz (with the Ozy -plane
coinciding with the horizontal plane and the Oz -axis directed vertically upward) and by
Euler's angles 0,9, Y of the principal central axes G, Gn, G{ of the ellipsoid of
inertia of the body relative to the fixed coordinate system.

The Lagrangian functions of the system and the Rayleigh dissipative function assumes the
form

L="%,[Acos*p + Bsin®* ¢ + m (y: cos 8 — { sin 6)%] 0" +Y, (C + my,? sin® 0) ¢ + Y, [(48in? ¢ + B cos'p)sin®® +
C cos®O* + m (7, cos 8 — L sin 6) Ya 8in 80°¢" + (A—B) sin O sin ¢ cos 8" + C cos 8¢y + Yy m (2 +
¥?) + mg (v, 8in 0 + { cos 6)

F=1Y,mk{[z' — (0,0 + a0 + ag¥)I® + [y — (B,0" + Beg" + Bsd)I2)
oy, = —siny (y,8in 0 + § cos ), ay = y, cosP + v, cos 0 sin ¢
as =7y 8in P + (y,cos 0 — {sin 6) cos P, P; = — da,/d¢
(i=1,23)
fw=§sing +ncosg, v, ==LFcosp—nsing

where m is the mass of the body, A4, B, C are its principal central moment of inertia, k>
0 is the friction coefficient, and }, 74, { are coordinates of the contact point of the body
with the plane in the system G&nl. It can be shown that §,m, [ are functions of variables
0 and ¢ that are determined by the form of the equation defining the body surface, and sat-
isfy relations of the form

(E'sing +n'cosq)sin® + ¢ cos =10 (4.1)

where the prime denotes differentiation with respect to 6 or ¢.
Since in input coordinates F is explicitly dependent on 1, we substitute for the =zy
coordinates the quasicoordinates p and ¢ defined by formulas
p'=2z'siny —ycosy, 6" =2z cosPp + ¥ siny (4.2)

We denote functions L and F, after elimination from them of z and y using (4.2), by
I[* and F* which depend only on 9, ¢, ', ¢, ¥, p', o',
In the new variables the equations of motion

d OL* oL* oF*

T e gy (L% n=0 n=e n=4v (4.3)
d oL* oF* oL . d 3L*  OF* oL*
TH = Hm iy wa = w ¥

do not explicitly contain 4, p, 0, only their velocities and accelerations appear in
them. It is reasonable to call the variables ignorable /9/, and refer to 0 and ¢ as posi-
tional, and formulate the problem of determining steady motions of the form

6= 601 6= 01 @ = Qo, ‘P. = OV w‘ = ‘ll’ﬂ.) P. = pﬂ.y ¢ == 00. (4.4)
and of their stability.
Substituting (4.4) into the equations of motion (4.3) with allowance for formulas (4.1),
we obtain that gy = g,’ =0, ¢ is arbitrary, and 6, and 9o are such that one of the princi-

pal axes of the body ellipsoid of inertia lies on the veritical passing through the point of
contact between body and the horizontal plane. System (4.3) admits the solution

8=n/2 6=0,¢=¢ =0, ¢ =w=const, p =0 =0 (4.5)

which corresponds to rotation of a body about the vertically positioned principal axis Gy
of the body ellipsoid of inertia at constant angular velocity.
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variables 0,

Au” + (4 + € — B) ov' + [(B — C) @ + mg (r, cos®a + (5.1)
r osin?a — gVl u 4 melr Y sin o cos or - omar — maws = I7
Ty BIL° G Gy T mg A7 1/ S & COSs QU -+ mar maws 1%

Cv" — (A4 + C— B) ou + [(B—A) o® + mg (rysin @ +
ry ¢08* @ — a)l v 4 mg (ry, — ry) sin o cos au — mas" —mawr =V, w = W

r'+kr—kaw — ko [—(r, —r)sinacosa u + (@ — rysin® & — ry cos® @) vl — s = R

s 4 ks + kav' — ko (@ — rycos? o — rpsin @) u — (1, — ry) sin @ cos av} + or = §

where u, v, w, r ,s are perturbations of variables 8,9, ¥, p,0, U,V,W,R, S are functions
of variables u, u', v, v', w, r,s, whose expansion begins with terms of order not lower than the

second, with U, Vo, W,, Ho, Sy identically zero (the zeroc subscript indicates that in respect-
ive functions all variables, except w, are assumed equal zero); a is the distance of the

noint of contact heotrwann body and nlane +5 +the baldy centary of macs- . anA > PR
peint O Contacc LeTween OO0GYy ant p.idanie TO Tie 004y Cencer Or mass; 7 and 1, axe the hu.;u—

cipal radii of the body surface curvature at the point of its contact with the plane, and «
is the angle between the principal central axis of the ellipsoid of inertia which corresponds
to moment C (G{) and the direction of the principal radius of curvature r,, measured from
the G -axis to the Gt -axis.

The characteristic equations for the linearized system is of the form

MA) =0, f(A) = JA®* + KA® + LM + MM + NA® +PA + Q (5.2)
J =AC=Joo, K=I[24C + (4 + C) ma* k = Ko :
L=[12AC+(B—-—A)(B—-0Ole*+ (A —C)ma(r, —r)x
sin @ cos @ ko + (4 + ma®) (C + ma®) k* - mgx
4 (rysina + rycosta — a) + € (ry cos®a + rysina — a)j= Ly o0? + Lok + Lo ok®* + Lo,
M=124C +2(B—A)(B—-C)+2(A + C) ma® +
(B—A—C)ma(r, + r)l 0% + (4 — C)ma(r, — r)x
sina cosa wk® + mg [24 (r; sin®? @ + rycos? @ — a) +
2C (ricos?a + rysinfa — a) + ma? (r; + ry — 20)lk = (M, 0% + M0k + Moy) &
=[AC + 2(B — A) (B — O)la* + 2 (A — €) ma.(ry—
ry) sin @ cos & 0k + {AC + (B — A)(B—C) +
ma [B (r, 4+ ry — 2a) — A (r, cos®* a + ry sinfa — 2a) —
C (ry sin’a + ry cos’a — 2a)] + m%? [a® + (a — r) X
(a — ry)l} 0*%* + mg (B (rl + rz —2a) + (A —C)(r, —rX
{cos?a — sin?a)] ®® + mg (4 (r sin®a + neos’a —a) +
C(rycosta + r,sin*a — a) + ma® (r, + r, — 2a)}k* +
mg?(a — 1)) (@ — rg) = Nyo0® + Ny 0%k + N,y p0th? + Nyoe? + Nogk® + Noo
P=R2B—-A4)B—-C+B—4—Cma(r, +ry) +
(4 + C) ma®) 0*k + (A — C) ma (r, — ry) sin & cos aw®k* +
mg2B{(r, + ry — 2a) — 24 (r;co8® & + 12 sin? ¢ — a) —
2C (rysinta + ry cos’a — a) + ma® (r, + ry — 2a)] 0% +
2mPg? (@ — 1y) (a— ry) k = (P4, 10" + Ps0% + Py 0® + Py,y) k
Q=(B—A)B—0w®+(4A—Cma(r,—r) X
sin o cos g’k + {(B— A)(B—C) + ma [B(r, + r; —2a) — A {ryco8®a + ry sin* ¢ — a) —
C (ry sin®o + r, cosa — @) + ma (a — ry) (@ — r,)1} 0%? +
[B(r, + r, — 2a) — 4 (r,cos?a + r,sin*a — a) —
C (rsinfa + rycos’a — a)l mgo* + mg (B (r, + r, — 2a) —
A (r;costa + rysinfa —a) — C (rysinfa 4 rycosfa — a) +
2ma(a — r) (@ — 1)) 0¥%? + m¥*2(a — 1) (a — ro) 0 +
m2g? (@ — ry) (@ — 15) k* = Qg 00° + @y 0% + Qu 0"k + Qa0 + Qs 02 + Q002 + Qg k2

The characteristic equation (5.2) has obviously one zero root. I1f in addition at least one
root of the eguation

f()=0 (5.3)
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lies in the right-hand half-plane, solution (4.5) is unstable, while when all roots of Eq.
(5.3) lie in the left-hand half-plane, the Liapunov theorem holds, since system (5.1) is of
the form that corresponds to the critical case of a single zero root, and solution (4.5) is
stable asymptotically with respect to 6,0, ¢, ¢, p’, 0 and nonasymptotically with respect to

V.
6. All roots of Eq.(5.3) lie in the left half-plane then and only then when the fol-
lowing conditions are satisfied /10/:

Ly o0? + Ly 10k + Logh® + Lo >0 (6.1)
Ny oot -+ Ny 0% + Ny g0 + Ny go® + Nooh* +- Ngo >0

Qs,00° + Q5,10% + Qg 29%%% 4 Q 00* + Qg s9%A% 1 Qs 600% -~ Qp 452 > 0

84,00 -+ 85 50% - By, (0% +- 8y 4k 1 8y 3007 + By 400k + 89 4% - 83 >0

Apa g0 + ... A (Dg, 008 - Agg®t - Ag g0 A8 L - Ay >0

where §,v and Au’v are coefficients of the expansion of determinants § and A in powers of
® and £k

J L N¢Q o
0J L N @
A={0 0 K M P
0K M P 0
KM P 0 0

and determinant 6 is obtained from determinant A by eliminating the first and last rows and
columns.
The analysis of conditions (6.1) is considerably simplified when k> | ®| or | o | > k.
If k> |w|, conditions (6.1) are equivalent to conditions

Q20 + Q4,40* + Qo >0 (6.2)
(N3,40® + Nog — Lg,s0%) 0 — (Q 0* + Qs 0* + Qo> 0
(A—C)(r,—r)sinecosa o >0

which exactly coincide with the conditions of rotation stability of a heavy solid body on an
absolutely rough horizontal plane. The first two of conditions (6.2) impose constraints only
on the distribution of masses and the body surface geometry, and on the magnitude of, angular
velocity, while the third represent constraints on the body direction of rotation.

Thus, if the friction coefficient is fairly large, the conditions of rotation stability
of a body on a plane with friction are virtually equivalent to those of rotation stability
of a body on an absolutely rough plane.

Note that by dividing Eq. (5.3) by k' and then setting %k = o we reduce it to the form

Lo,l’*‘ + My o003 - (N 50° + Nog)A® 4 Py 50?4 Q4,30 | (g,90% - Qo) =0

which is exactly the form of the equation for nonzero roots /7/ that corresponds to the case
of an absolutely rough plane.
Let now |o |[> 4%, then conditions (6.1) are virtually the same as conditions

Lo >0,Ni0>0,0Q60>0,8>0, Ajg3>0 (6.3)

which impose constraints only on the distribution of masses and the body surface geometry.
Note that region (6.3) is nonempty in the space of parameters (4, B, C, m, a, r,ry, a) in  the
neighborhood of the manifold 4 =C, r;=r, which corresponds to the case of rotation of a
dynamically symmetirc body about its axis of symmetry, supported by a spherical bearing. This
means that when the rotation of the body is fairly fast, its stability in certain particular
cases of mass distribution and body surface geometry is independent of the direction of rota-
tion.

However, even in the case of fast rotation, there exists in the space of parameters of
the system a region in which the stability of the body rotation substantially depends on the
rotation direction. Let, for instance, B=A4%C or B = (== A, then Q4,0 =0 and when
l® {>>k conditions (6.1) are equivalent to the conditions

Lio >0, Ng>0, 8,3>0, Ayy>0, Qo= (4 —C) (rs — 1) sin @ cos aw >0
which impose constraints not only on mass distribution and geometry of the body surface but,
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also, on the sign of angular velocity. The last condition, then coincides with the similar
condition of stability of body rotation on an absolutely rough plane, and the first four dif-
fer from the respective conditions.

The author thanks V. V. Rumiantsev for valuable remarks, and V. N. Rubanovski and
V. S. Sergeev for useful discussion.
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