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FRICTION FORCES 

A. V. KARAPETIAN 

It is shown that equations of motion of nonholonomic systems can be obtained from 
the equations of motion of systems freed of nonholonomic constraints subjected to 
suitably chosen dissipative forces, if in the latter the dissipation coefficient is 
assumed infinite. It is shown that on fairly general assumptions motions of non- 
holonomic systems represent limits of motions of corresponding holonomic systems, 
as the dissipation coefficient approaches infinity. The stability of rotation on 
a horizontal plane of a heavy asymmetric rigid body (Celtic stone) about thevertical, 
with allowance for friction, is investigated. The obtained stability conditions 
are compared with previously published papers about rotation of a body on an sbsol- 
utely rough horizontal plane around the vertical. 

1. Consider a mechanical system whose position is determined by n generalized coordinat- 

es Q~,..., q,, and its dynamic properties are defined by the Lagrange functions L(q,q’) = T(q, 
q’) + U(q) and generalized forces Q. (q,q’) (s = 1, . . ., n). We assume the kinetic energy T to 
be a positve definite quadratic form of velocities ql’, . . ..q.,’ of generalized coordinates,whose 
coefficients and the force function u are twice continuously differentiable with respect to 
Q, and the generalized forces Q, are continuously differentiable with respect to q and q’. 

Let us assume that the 

whose coefficients bai are 
system is then nonholonomic 
ions 

d a8 aw+w 
-7 dt aqi = 7-1 n,+ 2 [qp +&]bai+ 2 &&.ijqi. (i=i,...,m) (1.2) 
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abai abaj 
--- 

vaii = aqj 

ab,j 
aqi 
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system is subjected to nonintegrable constraints of the form 

m 

qa’=izlbai(q)qi’ (a=/!1 -1. I,...,n) (1.1) 

also twice continuously differentiable with respect to q. The 
and its motion can be defined, for instance, by Voronets' equat- 

which with the addition of Eq.cl.1) of constraints form a closed system. In these equations 

(3, (-ba , and n, are obtained, respectively, from T,~?T/ilq,‘, and Q, by eliminating pa’ using 
relations (1.1). 

Under these conditions Eqs.(l.l) and (1.2) constitute a closed system of the (n + nz)-th 

order in (n + m) unknowns ql, . . ., q,,, q,‘, . . ., q,,,‘, which satisfies the theorems of existence 

and uniqueness of solution. 
Let now all coordinates q. and velocities qs’ of the system be independent (free of 

constraints (l.l)), i.e. the system is holonomic, and let it be subjected, besides the input 
forces, to dissipative forces F, = -aF/aq,‘(s = 1, . . . . n) which are derivatives of a function 
of the form 

F =+k 2 (qci-cb,,qi.)“, k>O 
CZ=m+1 i=1 

We take the equations of motion in the Lagrange form 

d aL aL 
TiiZ_=x 

;Q+ (S=i,...,n) 

(1.3) 

(1.4) 

Under the indicated conditions (1.4) represents a closed system of the 2n-tb order in 2n 

unknowns ql, . . . . h ch’, . . ..h’. which satisfies the theorem of existence and uniqueness of solu- 
tion. 
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Eliminating k 
tions end dividing 

from the first m equations of system (1.41 using the last In-m) equa- 
the last (n- m) equations of that system by k, we obtain 

d aL 
-+-Q,+ 2 (-&$-$yQ+,,=O ;f7- agr 

(1.5) 
-+1 

(i=I,...,nz) 

+ $ + Qa) = qi - 2 b,,qj’ (a = m -f- 4, . . ., n) (1.61 

j=1 

m7 system (1.6) assumes the form of Eq,(l.l) of constraints and system If we set now k = 
(1.5), after the elitination frcun it qa’ using formulas (1.6) with k = 00 (i.e. (1.111, 
ass21mes the form of Voronets' equations (1.2). 

The equations of motionofanonholonomicsystem with constraints of farm (1.1) are, thus, 
obtained fran the equations of motion of a system freed of nonholonomic constraints subjected 
in addition to the input forces to dissipative ones that are derivatives of a function of 
form (1.3) by setting in the latter k equal infinity. 

Remark. holing of a rigid body over an absolutely rough surface (without slippage) gen- 
erates nonholonomic constraints of form (1.1) which express the condition of zerovelocityof 
thecontactpointbetweenbodyand supporting surface. If the system is freed from such non- 
holonomic constraints (admission of the possibility of slippage) and dissipation of form 
(1.3) is introduced, then to the latter correspond forces acting on the body at its contact 
point with the supporting surface, which are proportional to the velocity of that point of 
the body, in the opposite direction, i.e. viscous friction forces. 

2. We shall now prove that Tikhonov's theorem/l,2/ provides a positive answer to the 
question of,closeness of the nonholonomic system motion to satisfying the initial conditions 

~~~(s=i,.,.,n),qld(t=i,...,DL)r and to the holonomic system with initial conditions p,o (s = 
) . . . . n), ql;(s=l ,,.., n), as k-+m. 

Note that the last n -m of initial velocities of the holonomic system q0ra’ (a = m + 1, 
. . ., n) are arbitrary and may not satisfy formulas (1.1) at the initial instaut. 

We introduce the quasi-momenta 

fii=pi +AIpJhd (i=1,..., m), na=pcc (a=m + I,..., n) (2.1) 

where pa = auaq; (8 = 1, . . ,* n) are momenta that correspond to velocities qI’ of the system 
freed of nonholonomic constraints, and rewrite system (1.51, (1.6) in the canonical form 

q<=F (i=l,...,m) (2.2) 

. aiP m arc 
qa =&I + 

c% c 
=b,, (a=61 +l,...,n) (2.3) 

=1 i 
n 

c a, -m+1 

(2.5) 

where H*(g,n) is obtained from the Hamiltonian dT (q, p) that corresponds to the Lagrangian 
L (q, q’) by eliminating p,(s = 1, . . ., n) using formulaa (2.1) i similarly 
are obtained from P, of generalized forces 

ps+ (s = 1, . . .( n) 
Q6, expressedintermsof coordinates andnnta. 

The case of k = m in which system (2.5) assumes the form 

-&P/&c,=0 (a=m+1, . . . . n) (2.6) 

corresponds to a nonholonomic system. 
Systeme (2.2)-(2.5)and (2.2)- (2.4),(2.6) evidentlysatisfyontheabwe assumptions, the 

theorems of existence and uniqueness of solution, i.e. to the first and third conditions of 
Tikhonov's theorem /1,2/. Woreover, system (2.6) has the unique solution 

% = q%i (Ql, . . -1 qa, q, . . ., lx,) (u = m + i, * . ., n) 

that corresponds to the equations of nonholonomic constraints. Since 

(2.7) 
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system (2.6) is of the form 

(a=;,: 

i.e. (a' = 8H/8p,) is of the form (l.l), By virtue of 
under the above assumptions , solution (2.7) satisfies 

Let us consider the system 

n a' = --aH*lan, (a = m + 

I l,...,n) 

the uniqueness and differentiability 
the second of Tikhonov's theorems /1,2/. 

1, . ., n) (2.8) 
where the prime denotes differentiation with respect to some independent variable r, and 
&(S = 1, . . ., n) and ni(i = 1, . . ..m) are considered as parameters. The solution (*) (2.7) 
of system (2.8) is asymptotically stable uniformly with respect to q# and ni, since the 
equations of perturbed motion are of the form 

z,‘= - i U,fj(q)Zp (5a=JTa-(Fn(Qr, Xi), a=n+l,...,n) (2.9) 
!3=?7+1 

where II % (q) 11 is a matrix of the coefficients of the quasi-Hamiltonian H* for products of 
the last n-m quasi-momenta, whose all eigenvalues are positive (the kinetic energy is by 
assumption positive definite relative to velocities, and this implies the positive definite- 
ness of the Hamiltonian relative to momenta, as well as that of the quasi-Hamiltonian relat- 
ive to quasi-momenta). It is also obvious that the solution of system (2.5) with any initial 
zao approaches asymptotically zero, i.e. the whole domain of variation of xa is the region 

of attraction of point (2.7) of system (2.8). 
Consequently the last conditions of Tikhonov's theorem /1,2/ are satisfied, i.e. there 

exists a 0< Ji,< 00 such that for k >k, the solutions of system (2.2)-(2.5) with initial 
conditions qso, 1-6~~ approach in any finite time interval the solution of system (2.2)- (2.41, 
(2.6) with initial conditions qso,ni,,; as k+CO. In that case nao may not satisfy system 
(2.6). 

3. The following theorem is thus proved. 

Theorem. Let the force function and kinetic energy coefficients of the quadratic form 
of velocities, assumed positive definite, be continuously twice differentiable with respect 
to coordinates, and the forces acting on the system be continuously differentiable with re- 
spect to coordinates and velocities. Then the motions of a system subjected to nonholonomic 
constraints of form (1.1) with coefficients twice continuously differentiable with respect to 
coordinates are limit motions in any finite time interval for the corresponding motions of 
a system freed of nonholonomic constraints and subjected (in addition to input) to dissipative 
forces that are derivatives of functions of form (1.3), as the dissipation coefficient ap- 
proaches infinity. 

Remarks. lo. The initial conditions of a free system may not satisfy the equations of 
constraints. Consequently, the state of a system free of nonholonomic constraints at the 
initial instant can substantially differ from that of a system with constraints. However the 
difference is small for times of order In k/k and approaches zero as k-+m /2/. 

2O. With appropriate strengthening of requirements as regards the differentiability of 
Lagrangian functions, generalized forces, and coefficients of constraints the asymptotic ex- 
pansions in the small parameter ilk /2/ are valid for solving systems with dissipations freed 
of constraints. 

The proved theorem means in particular that the nonholonomic constraints that arise when 
bodies moveoverabsolutelyroughsurfaces (withoutslippage)canbe due to viscous friction for- 
ces when the friction coefficient is infinite. 

A similar statement about a specific System, that of Chaplygin's sledge on a horizontal 
plane in the presence of nonholonomic constraint or of viscous friction force, was earlier 
obtained by Fufaev /3/ in the course of investigation of integral curves. 

_- 
*) Editor's note: In the Russian original the word "equilibrium (2.7)" is used. 
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Note that viscous friction occurs when a body moves on a surface in 
mode /4,5/ (in pure sliding mode, dry friction must be considered). 

4. Necessary and sufficient conditions of stability of rotation of 

a sliding or rota- 

a heavy solid body 

33 

about the vertical on an absolutely rough horizontal plane were established in /6,7/. We 
shall now investigate the case of a smooth plane with viscous friction, previously investi- 
gated only numerically in /8/. 

Consider a heavy solid body bounded by a convex surface on a horizontal plane, assuming 
that at the point of contact of the body and plane a force proportional to the velocity of 
the point of contact of the body with the plane acts in the opposite direction (the viscous 
friction force) on the body. We specify the position of the body by the coordinates r, y 
of the body center of mass in the fixed system of coordinates Oqz (with the Oxg -plane 
coinciding with the horizontal plane and the Oz -axis directed vertically upward) and by 
Euler's angles 8,(p) I) of the principal central axes G&Q, Gt of the ellipsoid of 
inertia of the body relative to the fixed coordinate system. 

The Lagrangian functions of the system and the Rayleigh dissipative function assumes the 
form 

L = Vs [A co9 cp + B sin' cp + m (yl cos 8 - E sin t+)*l e"-F/, (C + m$ sin* 9) cp" + I/, [(A sin'cp + B cos’q~) sin9 + 

C cos%]~'* + m (n cos 0 - 5 sin e) y; sin 88'cp' + (A-B) sin 8 sin cp COB cp8'$* + C co9 ecpy + I/, m(z’” + 

y’*) + mg (n sin 8 + 6 ~08 e) 

F = ‘I1 mk {h’ - he’ + qcp’ + a&*)P + 1~’ - (file’ + B,cp’ + ~&‘)I*) 

aI= -sin+(~lsinO+ tmse), a,=y,cos*+ y,cos8sinq 

ti = yB sin q + (vl COB e - g sin e) co8 *, fir = - Oalu+ 
(i = 1, 2, 3) 

y1 = E sin cp + q co8 cp, v, = 6 cos cp -q sin cp 

where m is the mass of the body, A, B, C are its principal central moment of inertia, k> 
0 is the friction coefficient, and E,q, 6 are coordinates of the contact point of the body 
with the plane in the system G&c. It can be shown that E,n, c are functions of variables 
9 and cp that are determined by the form of the equation defining the body surface, and sat- 
isfy relations of the form 

(E’ sing + q' co9 cp) sine + C cos 8 E 0 (4.1) 

where the prime denotes differentiation with respect to 8 or q. 
Since in input coordinates F is explicitly dependent on 4, we substitute for the zy 

coordinates the guasicoordinates p and u defined by formulas 

p' = 5' sin 1c, - y' COB *, 0’ = x’ Cos 9 + y’ sin Cp (4.2) 

We denote functions L and F, after elimination from them of i and y' using (4.2), by 
L* and P which depend only on 9, cp, 8', cp'.$', p', d. 

In the new variables the equations of motion 

d aL* aL+ aF* 
z-~=-q--axi’ (i=i,2,3; x1=0, x%=c~, a-9) (4.3) 

do not explicitly contain 9, p, u, only their velocities and 
them. 

accelerations appear in 
It is reasonable to call the variables ignorable /9/, and refer to 8 and cp as posi- 

tional, and formulate the problem of determining steady motions of the form 

8 = eO, 8’ = 0, up = cpo, up’ = 0, ** = *., p* = p;, (J’ = a0 

and of their stability. 

(4.4) 

Substituting (4.4) into the equations of motion (4.3) with allowance for formulas (4.1), 
we obtain that po' = uoO' = 0.90' is arbitrary, and 9, and cp 0 are such that one of the princi- 
pal axes of the body ellipsoid of inertia lies on the veritical passing through the point of 
contact between body and the horizontal plane. System (4.3) admits the solution 

e = n/ 2, 8' = 0, I$! = cp' = 0, q = w = conat, p’ = a- = 0 (4.5) 

which corresponds to rotation of a body about the vertically positioned principal axis 
of the body ellipsoid of inertia at constant angular velocity. 

Gq 



34 A. V. Karapetian 

5. Let us investigate the stability of solution (4.5) with respect to perturbations of 
variables 8, 8', (p, cp', $9 p-9 0.. 

After transformations, the equations of perturbed motion are reduced to the form 

Au”+(A+C-B)ov’+I(B-c)0*+mg(r,cos*a+ 
r*sin*a-a)]u+mg(r*-rr,)sinacoSav+nlUr'- maws=U 

Cv” - (A + C - B) ou’ + [(B - A) o* + mg (rl sin* a + 
r* cos* CL - a)] v + mg (r* - rl) sin a cos au - mus' - mawr = V, w’ = W 

r'+kr-kkau'-kX-o[-(r*-rr,)sinacosau+(a-rTlsin*a-r*cos*a)v]-~~~~R 

s' + ks + kav’ - ko [(a - rl co? a - r* sin's) u - (r, - r,) sin a cos au] + or = S 

(5.1) 

where u, v, w, r , s are perturbations of variables 8,rp, I+', o',u', v, v, W, R, s are functions 
of variables u,u',v,v',w, r,s, whose expansion begins with terms of order not lower than the 
second, with lJn. VO, Wn, RO, So identically zero (the zero subscript indicates that in respect- 
ive functions all variables, except w, are assumed equal zero); a is the distance of the 
point of contact between body and plane to the body center of mass; r1 and r* are the prin- 
cipal radii of the body surface curvature at the point of its contact with the plane, and a 
is the angle between the principal central axis of the ellipsoid of inertia which corresponds 
to moment C(GS) and the direction of the principal radius of curvature rl, measured from 
the G< -axis to the GE -axis. 

The characteristic equations for the linearized system is of the form 

hf (1) = 0, f (1) = Jh6 + Ki5 -t LX4 + Mh3 + Nh* +Ph + Q 

J = AC E Jo,*, K = [2AC + (A + C) ma*1 k = K&T 

(5.2) 

L = [2AC + (B - A) (B - C)l w* + (A - C) ma (r* - rl)x 
sinacosako+(A+ma*)(C+ma*)k*+mgx 

IA (rl sin* a f r*cos*a - a) i- C (rl cos’a + r* sin*a - a)]~ L*,*o* + &ok + ,&*k* + 

M = 12AC + 2 (B - A) (B - C) + 2 (A + C) ma* + 

(B-A-C) mu (rl + r*)l o*k + (A - C) ma (r* - rdx 
sin a cos a ok* + mg [2A (rl sin* a + r* cos* a - a) i- 
2~ (rl cos* a + r* sin* a - a) + ma* (rl + r* - 2a)lk = (M*,,o* + iM,,*ok + MO,,) k 

N = [AC + 2 (B - A) (B - C)ld + 2 (A - C) ma.(r*- 

rJ sin a cos a dk + {AC + (B - A) (B - C) + 
ma [B (rl + r* - 2~) - A (rI cos* a + r* sin*a - 2a) - 

C (rl sin* a + r* cos* u - 241 + m*a* Ia* + (a - rl) X 

(a - r*)l) o*k* + mg [B (rl + r* - 24) + (A - C) (r* - r,)X 
(cos*a - sin*a)] a* + mg [A (rl sin*a + r*cos*a - a) + 
C (rl cos* cc + r* sin* a - a) + ma* (rl + r* - Za)]k* + 

m*g*(a - rJ (a - r*) = Nd,*04 + N* 1 oak , + N*,*w*k* + N*,oo* + No,*k* + No,* 

L 0.0 

P = I2 (B - A) (B - C) + (B - A - C) ma (rl + r*) + 
(A + C) ma*] o’k + (A - C) ma (r, - rJ sin a cos a&* + 

mg l2B (rl + r* - 2~) - 2A (rl co9 a + r* sin* a - a) - 
2C (r,sin*a + r*cos* a - a) + ma* (rl + r* - 2a)l o*k + 
2m*g* (a - rl) (a- r2) k E (Po,104 + P*,*dk + P*,,o* -I P,,,) k 

Q = (B - A) (B - C) d + (A - C) ma (r* - rl) x 
sin a cos adk + ((B - A) (B - C) + mu IB (rl + r* - 2~) - A (rl cos* a + r* sin* a - a) - 

C (rl sin*u + r* cash - a) + ma (a - rJ (a - r*)l} w4F -I- 
IB (rl + r, - 2a) - A (rlcos*a + r* sin*a - a) - 

C (rl sin*a + r*cos*a - a)1 mgd + mg IR (r, + r* - 2a) - 
A (rl COS*U + r* sin*a - a) - C (rl sin* a -!- r*cos*a - a) + 
2ma (a - rl) (a - r*)] w*k* + m*g* (a - rl) (a - r*) 6>* + 

m*g* (a - rJ (a - r*) k* = QB.OO* + Q,.,dkf Qd,*o’k* + Qa,om4 + Q*,*o*k* t Q*,& + Q*,*k* 

The characteristic equation (5.2) has obviously one zero root. If in addition at least one 

root of the equation 

f (4 = 0 (5.3) 
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lies in the right-hand half-plane, solution (4.5) is unstable, while when all roots of Es. 
(5.3) lie in the left-hand half-plane, the Liapunov theorem holds, since system (5.1) is of 
the form that corresponds to the critical case of a single zero root, and SolUtfo8-i (4.5) is 
stable asymptotically with respect to 6,fY. cp, cp',p', d and nonasymptotically with rSSp@Ct to 

*,'* 

6. ~11 roots of Eq. (5.3) lie in the left half-plane then and Only then when the fol- 
lowing conditions are satisfied /lo/: 

JL NQ 0 
OJ LNQ 

A -00 KMP 
OKMPO 
KMPO 0 

and determinant 6 is obtained from determinant A by eliminating the first and last rowsand 
columns. 

The analysis of conditions (6.1) is considerably simplified when k> 101 or 
If k>loI, conditions (6.1) are equivalent to conditions 

(@l>k. 

Qeo' + OS& + Qo,r > 0 
(N,,,w~ + h'a.8 - &,,d 0' - (Quo' + Q8.s a* + Qo.c)> 0 
(A -C)(r,-rl)sinacosao>O 

(6.2) 

which exactly coincide with the conditions of rotation stability of a heavy solid body on an 
absolutely rough horizontal plane. The first two of conditions (6.2) impose constraintsonly 
on the distribution of masses and the bcdy surface geometry , and on the magnitude of, angular 
velocity, while the third represent constraints on the body direction of rotation. 

Thus, if the friction coefficient is. fairly large, the conditions of rotation stability 
of a body on a plane with friction are virtually equivalent to those of rotation stability 
of a body on an absolutely rough plane. 

Note that by dividing Eq. (5.3) by P and then setting k = 00 we reduce it to the form 

Lo,&' + MI,&' + (K*.ti* + No,%) A* + Pa.~oq + (Q4,& -I- Qs.ao)' -I- Qo.2) ~0 

which is exactly the form of the equation for nonsero roots /7/ that corresponds to the case 
of an absolutely rough plane. 

Letnow IoI>k, then conditions (6.1) are virtually the same as conditions 

L,,o > 0, N490 >% 0600 > 0, ha> 0, Amr > 0 (6.3) 
which impose constraints only on the distribution of masses and the body surface geometry. 
Note that region (6.3) is nonempty in the space of parameters (d,B,C, m,a,rl,r,,a) in the 
neighborhood of the manifold A = C, rl = r2 which corresponds to the case of rotation of a 
dynamically synxnetirc body about its axis of syrmnetry, supported by a spherical bearing. This 
means that when the rotation of the body is fairly fast, its stability in certain particular 
cases of mass distribution and body surface geanetry is independent of the direction of rota- 
tion. 

However, even in the case of fast rotation, there exists in the space of parameters of 
the system a region in which the stability of the body rotation substantially depends on the 
rotation direction. Let, for instance, 
loI>k 

B = A#C or B = C#A, then Q6,0 -0 and when 
conditions (6.1) are equivalent to the conditions 

GUI > 0, N4.o > 0, 64,~ > 0, AX~,~ > 0, Qs,lo = (A - C) (r, - rl) sin a cos ao > 0 

which impose constraints not only on mass distribution and geometry of the body surface but, 
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also, on the sign of angular velocity. The last condition, then coincideswittthe similar 
condition of stability of body rotation on an absolutely rough plane, and the first four dif- 
fer from the respective conditions. 

The author thanks V. V. Rumiantsev for valuable remarks, and V. N. Rubanovski and 
V. S. Sergeev for useful discussion. 
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